Tracing Dynamic Evolution from Cross-dialect Comparisons:
A Case Study of Tonal Systems in Songzi Area

by WANG Caiyu

Division of Humanities
The Hong Kong University of Science and Technology

Abstract

Songzi of Hubei, located at a boundary area influenced by Xiang and Gan, now is classified into
Subgroup Changhe of Southwestern Mandarin though it is quite distinct from the other members
in this subgroup. It is also at the southern tip of a narrow area dividing Hubei into two dialectal
parts with or without Rusheng (Entering Tone).

This paper attempts to find out the evolutionary process of Rusheng and the phonological
systems among Songzi dialects. Based on the Pan-chronic Phonology, the methods of
Acoustic and Auditory Phonetics and a broad fieldwork, the study reveals that Songzi dialect
can be further divided into three phonological systems, i.e. Weishui, Nanhai and Songzihe,
which manifest a dynamic tonal evolution. Except for an extra Rusheng category in Weishui,
Weishui and Nanhai are identical in their tonal systems; then a tonal flip-flop of Yinping and
Qusheng occurs in Nanhai and Songzihe. In addition, according to the four parameters to define
Rusheng, the Rusheng category of Weishui is undergoing the following changes: (1) this
Rusheng in falsetto or fortis voice falls in two ways, which implies its downward movement
from Register High to Register Mid; (2) though the glottal stop ending ¢ is at the edge of a
total disappearance, it still exists and is realized in two ways; (3) its duration almost
approximates to the other non-Rusheng tones; (4) as to the pitch of Weishui’s Rusheng, two
contours co-occur, which are being lowered or directly changed into other non-Rusheng
tones.

In the previous literature, the tonal systems of Songzi dialects were defined under the
Five-point Scale. However, with the new findings of this research, there is a challenge in the
need for a new theory for the definition of tones.

Key words : Rusheng, Songzi, Falsetto, Southwestern Mandarin, Language Evolution,
Tonal flip-flop